

NIGACE WR-EW

低噪音 • 宽温 • 汽车电装部件轴承用润滑脂

技术资料

Technical Information

http://www.nippon-grease.co.jp

特点

NIGACE WR-EW 是用去除杂质的无尘机械设备,在谨密操作下而生产出来的无尘润滑脂。具有以下优点。

使用温度范围

NIGACE WR-EW 使用温度范围广。

组成

NIGACE WR-EW 润滑脂是采用脲基有机化合物为稠化剂,以二苯醚系合成油为基础油,并且添加了抗氧化剂,防锈剂等添加剂的有效配方。

主要用途

NIGACE WR-EW 润滑脂具有低噪音,使用温度范围广,适合使用于各种汽车电装轴承。

优秀的润滑寿命

NIGACE WR-EW 具有优秀的润滑特性,是一款长寿命润滑脂。

润滑脂寿命试验 (ASTM D3336)

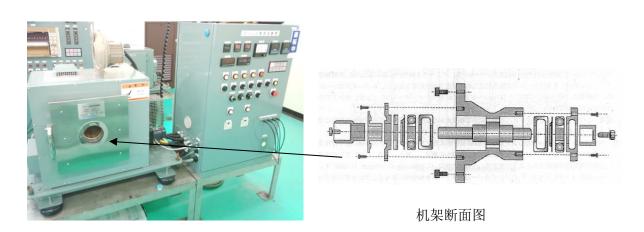
试验方法

把样品润滑脂注入到6204轴承里面,安装在机器上。

按以下条件测试到达寿命的时间。

分析判断寿命的标准是根据过电流和温度异常上升等。

试验条件


轴承 : 6204

运转数 : 10,000min⁻¹

试验温度 : 180℃

载荷 : 轴向 15lbs 径向 12lbs

运转行程 : 20h 运转 4h 休息

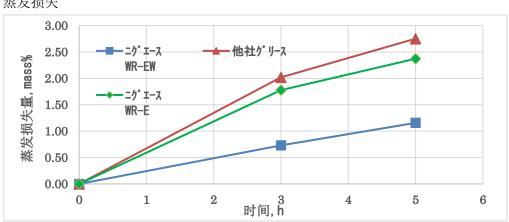
		NIGACE WR-EW 其他公司润滑	
寿命 (h)	180°C	372	368

优秀的耐热性

NIGACE WR-EW 严格挑选各种原材料,具有优秀的耐热性能。

薄膜加热试验 (本公司法)

试验方法

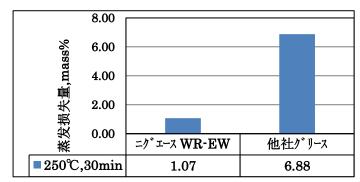

把样品润滑脂涂在 SPCC 钢板上,放入控制规定温度的恒温空气箱里进行加热,在 一定时间后, 观察润滑脂的表面情况和损失量。

试验条件1

试验结果

蒸发损失

外观变化


右边:其他公司产品 左边: NIGACE WR-E 中间: NIGACE WR-EW

试验条件2

试验温度,时间 : 250°C × 30min 润滑脂膜厚 : 3mm

外观变化

试验前

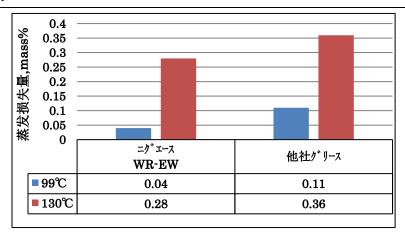
5min 后

10min 后

左側: NIGACE WR-EW 右側: 其他公司产品

20min 后

30min 后


蒸发损失量试验 (根据 JIS K 2220 10)

试验方法

把样品放在试验容器里面,安装好蒸发器,放置在规定温度的恒温箱内。使用规定流量的清净空气吹在样品表面 22 小时后,以样品的减少量来计算出蒸发损失量。

试验条件

试验温度 : 99℃,130℃ 试验时间 : 22 h

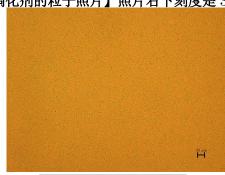
优秀的噪音性能

NIGACE WR-EW 润滑脂是用无尘设备制造出来的,杂质极少,且润滑脂的稠化剂等的粒子是通过特殊的加工以后变得细小且均匀,所以具有优秀的噪音性能。

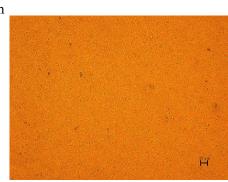
润滑脂噪音试验(安德鲁噪音试验)

试验条件

轴承: 6202注脂量: 0.7g运转数: 1,800min-1试验时间: 2min


径向载荷 : 20N

试验结果


	NIGACE WR-EW	其他公司润滑脂	
安德鲁噪音值	1. 32	2. 07	

*测试从开始到一定时间的安德鲁值(High band/频率 1,800~10,000Hz)的变化,取其平均值。

【稠化剂的粒子照片】照片右下刻度是 30 μ m

NIGACE WR-EW

其他公司润滑脂

优秀的防锈性

NIGACE WR-EW 通过严格挑选防锈剂,所以具有优秀的防锈性能。

轴承防锈试验 (根据 ASTM D 1743-81)

试验方法

试验用轴承里面注脂 2g,以 $1750min^{-1}$ 的运转速度,26.7N 的径向负荷,使其运转 60 秒以后,把轴承浸放在 0.5% 的盐水里面 10 秒,然后放置在 52 度,100%湿度氛围中,静置 48 小时后,观察轴承的生锈情况。

试验条件

轴承 : 圆锥滚珠轴承 外圈 №.09196 内圈 №.09074 (TIMKEN 公司)

注脂量 : 2.0g 试验温度 : 52℃ 试验时间 : 48h 试验湿度 : 100%

判定

评点1: 无生锈

评点2: 小锈斑3点以上

评点3: 小锈斑4点以上,锈斑大小大于评点2

	NIGACE WR-EW	其他公司润滑脂
轴承防锈 (评点)	1, 1, 1	1, 1, 1

NIGACE WR-EW

其他公司润滑脂

优秀的低温性能

NIGACE WR-EW 具有优秀的低温性能。

低温扭矩试验 (JIS K 2220 18)

试验方法

给轴承注脂后,放置在试验温度里冷却 2 小时以后,以 1min⁻¹的运转速度,来测量其 扭矩。

【启动力矩】: 把开始后的最大扭矩作为启动力矩。

【运转力矩】: 用 10 分钟的运转时间来测量。从 9 分 45 秒开始,把 15 秒间的平均 扭矩作为运转力矩。

试验条件

轴承 : 6204
运转数 : 1min⁻¹
注脂量 : 约 4g

试验结果

		NIGACE WR-EW	其他公司产品
低温扭矩 -40℃	启动力矩	470	610
-40 C (mN • m)	运转力矩	150	160

优秀的氧化安定性能

NIGACE WR-EW 具有优秀的氧化安定性能。

氧化安定性试验 (JIS K 2220 12)

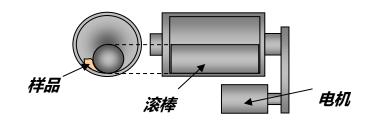
试验方法

把试料放在氧压液化气瓶里,并放入 99 度的恒温箱内,每一定时间记录其压力降下数,测量一定时间后氧压的减少。

试验条件

温度 : 99℃ 时间 : 100h

NIGACE WR-EW		其他公司产品	
压力下降	kPa	10	10


优秀的剪切性能

NIGACE WR-EW 润滑脂具有优秀的剪切性能。

滚筒安定性试验(根据 ASTM D1831)

试验方法

在运转的滚筒内,滚棒沿着滚筒内壁随着自重而进行滚动,因为滚筒和滚棒之间夹着润滑脂,所以受到剪切破坏,根据试验前后锥入度的变化,来评价润滑脂的剪切安定性能。

试验条件

试验温度 : RT 运转数 : 165min⁻¹

试验时间 : 20 h

	NIGACE WR-EW	其他公司产品	
锥入度变化	+52	+50	

NIGACE WR-EW

典型数据

	试验项目		典型数据	试验方法	
外观			淡黄白色 粘稠状	目测	
稠化剂			脲基化合物	_	
基础油			合成油	_	
工作锥入度	(25°C 60W)		297	JIS K 2220 7	
滴点		$^{\circ}\mathrm{C}$	280 以上	JIS K 2220 8	
铜板腐蚀	(B法 100°C 24h)		合 格	JIS K 2220 9	
蒸发损失量	(99°C 22h)	mass%	0.15	JIS K 2220 10	
钢网分油	(100°C 24h)	mass%	0.1	JIS K 2220 11	
氧化安定度	(99°C 100h)	kPa	10	JIS K 2220 12	
	10 μ m 以上		133		
杂质	25 μ m 以上		33	II.C. V. 0000 10	
个/cm³	75 μ m 以上		0	- JIS K 2220 13	
	125μm以上		0		
低温扭矩	启动力矩		470	II.0 K 0000 10	
(−40°C) mN • m	运转力矩		150	JIS K 2220 18	
基础油动黏度	(40°C)	mm²/s	100.5	JIS K 2283	
轴承防锈性能	(52°C 48h 0.5%塩水)	rating	1, 1, 1	根据 ASTM D 1743-81	